Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1

نویسندگان

  • Ya Su
  • Katherine G. Blake-Palmer
  • Sara Sorrell
  • Babak Javid
  • Katherine Bowers
  • Aiwu Zhou
  • Simon H. Chang
  • Seema Qamar
  • Fiona E. Karet
چکیده

The vacuolar-type ATPase (H+ATPase) is a ubiquitously expressed multisubunit pump whose regulation is poorly understood. Its membrane-integral a-subunit is involved in proton translocation and in humans has four forms, a1-a4. This study investigated two naturally occurring point mutations in a4's COOH terminus that cause recessive distal renal tubular acidosis (dRTA), R807Q and G820R. Both lie within a domain that binds the glycolytic enzyme phosphofructokinase-1 (PFK-1). We recreated these disease mutations in yeast to investigate effects on protein expression, H+ATPase assembly, targeting and activity, and performed in vitro PFK-1 binding and activity studies of mammalian proteins. Mammalian studies revealed complete loss of binding between the COOH terminus of a4 containing the G-to-R mutant and PFK-1, without affecting PFK-1's catalytic activity. In yeast expression studies, protein levels, H+ATPase assembly, and targeting of this mutant were all preserved. However, severe (78%) loss of proton transport but less decrease in ATPase activity (36%) were observed in mutant vacuoles, suggesting a requirement for the a-subunit/PFK-1 binding to couple these two functions. This role for PFK in H+ATPase function was supported by similar functional losses and uncoupling ratio between the two proton pump domains observed in vacuoles from a PFK-null strain, which was also unable to grow at alkaline pH. In contrast, the R-to-Q mutation dramatically reduced a-subunit production, abolishing H+ATPase function completely. Thus in the context of dRTA, stability and function of the metabolon composed of H+ATPase and glycolytic components can be compromised by either loss of required PFK-1 binding (G820R) or loss of pump protein (R807Q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule

The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that ...

متن کامل

Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity.

V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405...

متن کامل

Atp6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype.

Autosomal recessive distal renal tubular acidosis (dRTA) is a severe disorder of acid-base homeostasis, often accompanied by sensorineural deafness. We and others have previously shown that mutations in the tissue-restricted a4 and B1 subunits of the H(+)-ATPase underlie this syndrome. Here, we describe an Atp6v0a4 knockout mouse, which lacks the a4 subunit. Using β-galactosidase as a reporter ...

متن کامل

Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis.

Vacuolar-type H(+)-ATPases (V-H(+)-ATPases) are the major H(+)-secreting protein in the distal portion of the nephron and are involved in net H(+) secretion (bicarbonate generation) or H(+) reabsorption (net bicarbonate secretion). In addition, V-H(+)-ATPases are involved in HCO(3)(-) reabsorption in the proximal tubule and distal tubule. V-H(+)-ATPases consist of at least 13 subunits, the func...

متن کامل

Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss.

Autosomal recessive distal renal tubular acidosis (rdRTA) is characterised by severe hyperchloraemic metabolic acidosis in childhood, hypokalaemia, decreased urinary calcium solubility, and impaired bone physiology and growth. Two types of rdRTA have been differentiated by the presence or absence of sensorineural hearing loss, but appear otherwise clinically similar. Recently, we identified mut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American Journal of Physiology - Renal Physiology

دوره 295  شماره 

صفحات  -

تاریخ انتشار 2008